Rank decomposability in incident spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing Degrees in Polish Spaces and Decomposability of Borel Functions

In this article we give a partial answer to an important open problem in descriptive set theory, the Decomposability Conjecture on Borel functions from an analytic subset of a Polish space into a separable metrizable space. Our techniques employ deep results from effective descriptive set theory and recursion theory. In fact it is essential to prove that several prominent results in recursion t...

متن کامل

Finite Rank Toeplitz Operators in Bergman Spaces

We discuss resent developments in the problem of description of finite rank Toeplitz operators in different Bergman spaces and give some applications

متن کامل

Primitive Spaces of Matrices of Bounded Rank

A weak canonical form is derived for vector spaces of m x n matrices all of rank at most r. This shows that the structure of such spaces is controlled by the structure of an associated 'primitive' space. In the case of primitive spaces it is shown that m and n are bounded by functions of r and that these bounds are tight. 1980 Mathematics subject classification (Amer. Math. Soc.): 15 A 30, 15 A...

متن کامل

Vector Spaces of Matrices of Low Rank

In this paper we study vector spaces of matrices, all of whose elements have rank at most a given number. The problem of classifying such spaces is roughly equivalent to the problem of classifying certain torsion-free sheaves on projective spaces. We solve this problem in case the sheaf in question has first Chern class equal to 1; the characterization of the vector spaces of matrices of rank d...

متن کامل

The Asymptotic Rank of Metric Spaces

In this article we define and study a notion of asymptotic rank for metric spaces and show in our main theorem that for a large class of spaces, the asymptotic rank is characterized by the growth of the higher filling functions. For a proper, cocompact, simplyconnected geodesic metric space of non-curvature in the sense of Alexandrov the asymptotic rank equals its Euclidean rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1995

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)00351-y